Is the Inca Bone Useful for Racial Identification?

10.33876/2311-0546/2024-4/306-317

Authors

Keywords:

skull anatomy, occipital bone, interparietal bone, quadripartite Inca bone, preinterparietal bone

Abstract

According to embryological data, the interparietal part of the occipital squama develops from one primary and two secondary ossification centers. Inca bones originate from incomplete ossification of these secondary pairs during embryogenesis, resulting in the formation of distinct bones separated by sutures. This study assessed the prevalence and variations of Inca bones across both modern and ancient human populations, analyzing 3,544 crania from contemporary populations in Europe, Siberia, the Americas, Asia, Africa, Australia, and Melanesia, along with 2,038 ancient crania from the Neolithic to the Medieval periods in Siberia, Armenia, Crimea, and Eastern Europe. The highest incidences of Inca bones, exceeding 4%, were observed in isolated groups such as the Orochi (15%), Ainu (8.5%), Melanesians (6.2%), and Malays (4.8%). The results of the study indicate that there is no correlation between the frequency distribution of this trait and specific regions. The presence of the Inca bone, being influenced by genetic factors, suggests that its occurrence in certain small, isolated populations is attributable to genetic drift. Among the structural variants of Inca bones identified, an extremely rare quadripartite type was observed in a Scythian cranium from Crimea. In this specimen, both pairs of secondary ossification centers in the upper part of the occipital squama manifested as separate bones, mirroring the structure found in lower vertebrates. The occurrence of various Inca bone variants in humans may represent atavistic regressions triggered by mutations that change the timing of suture closure and cranial ossification patterns. Given its hereditary nature, the Inca bone could be crucial for establishing kinship in fossil populations and in forensic medical practice. The possibility of encountering Inca bones should also be considered during surgical procedures.

Author Biography

  • Аlla Movsesian, M. V. Lomonosov Moscow State University

    Movsesian, Аlla A. — Ph.D. in Biology, Leading Researcher of the Department of Anthropology of the Faculty of Biology, Lomonosov Moscow State University (Moscow, Russian Federation). E-mail: amovsessyan@gmail.com ORCID ID: https://orcid.org/0000-0003-1329-5904

    For citation: Movsesian, А. A. 2024. Is the Inca Bone Useful for Racial Identification? Herald of Anthropology (Vestnik Antropologii) 4: 306–317.

    References
    1. Anuchin, D. N. 1880. O nekotorykh anomaliiakh chelovecheskogo cherepa i preimushchestvenno ob ikh rasprostranenii po rasam [About Several Anomalies of the Human Cranium and Primarily on Their Prevalence According to Race]. In Izvestiia Imperatorskogo Obshchestva liubitelei estestvoznaniia, antropologii i etnografii [Bulletin of the Imperial Society of Lovers of Natural Science, Anthropology and Ethnography]. Vol. 38(3). 121 p.
    2. Bellamy, P. F. 1842. A Brief Account of Two Peruvian Mummies in the Museum of the Devon and Cornwall Natural History Society. The Annals and Magazine of Natural History 10(63): 95–100. https://doi.org/10.1080/03745484209445203
    3. Bystrov, A. P. 1957. Proshloe, nastoyashchee, budushchee cheloveka [Past, Present and Future of Man]. Leningrad: Medgiz. 269 p.
    4. De Beer, G. R. 1937. The Development of the Vertebrate Skull. Oxford: Clarendon Press. 570 p.
    5. Dodo, Y., and H. Ishida. 1987. Incidences of Nonmetric Cranial Variants in Several Population Samples from East Asia and North America. Journal of the Anthropological Society of Nippon 95: 161–177. https://doi.org/10.1537/ase1911.95.161
    6. Fujita, M. Q., M. Taniguchi, B. L. Zh, et al. 2002. Inca Bone in Forensic Autopsy: A Report of Two Cases with a Review of the Literature. Legal Medicine 4(3): 197–201.
    7. Gans, C., and R. G. Northcutt. 1983. Neural Crest and the Origin of Vertebrates: A New Head. Science 220(4594): 268–73. https://doi.org/10.1126/science.220.4594.268
    8. Gardner, S. 2016. A Human Skull with a Tripartite Inca Bone: A Case Report. Forensic Medicine and Anatomy Research 4: 37–39. https://doi.org/10.4236/fmar.2016.43007
    9. Green, R. E., J. Krause, A. W. Briggs et al. 2010. A Draft Sequence of the Neandertal Genome. Science 328(5979): 710–722. https://doi.org/10.1126/science.1188021
    10. Hanihara, T., and H. Ishida. 2001. Os Incae: Variation in Frequency in Major Human Population Groups. Journal of Anatomy 198:137–152. https://doi.org/10.1046/j.1469-7580.2001.19820137.x
    11. Hauser, G., and G. F. De Stefano. 1989. Epigenetic Variants of the Human Skull. Stuttgart: Schweizerbart. 301 p.
    12. Ibrahim, I. H. 2020. Anatomical Variations of Inca bone in Adult Human Egyptian Skulls. International Journal of Approximate Reasoning 8(1.1): 7271–7276. https://doi.org/10.16965/ijar.2019.356
    13. Joseph, S., Mathew, A. J., Sukumaran, T. T. et al. 2022. The Inca Bone: A Throwback to an Ancient Civilization and People. Journal of Morphological Sciences 39: 115. https://doi.org/51929/jms.39.115.2022
    14. Kadanoff, D., and S. T. Mutafov. 1968. Über die Variationen der typisch lokalisierten überzähligen Knochen und Knochenfortsätze des Hirnschädels beim Menschen. Anthropologischer Anzeiger 31(1/2): 28–39.
    15. Kolte, D. T., and V. R. Mysorekar. 1966. Tri-Partite Interparietal Bone. Journal of the Anatomical Society of India 15: 96.
    16. Koyabu, D. 2023. Evolution, Conservatism and Overlooked Homologies of the Mammalian Skull
    . Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 378(1880): 20220081. https://doi.org/10.1098/rstb.2022.0081
    17. Koyabu, D., W. Maier, and M. R. Sánchez-Villagra. 2012. Paleontological and Developmental Evidence Resolve the Homology and Dual Embryonic Origin of a Mammalian Skull Bone, the Interparietal. Proceedings of the National Academy of Sciences 109(35): 14075–80. https://doi.org/10.1073/pnas.1208693109
    18. Lahr, M. M. 1996. The Evolution of Modern Human Diversity. A Study of Cranial Variation. Cambridge: Cambridge University Press. 416 p.
    19. Le Double, A. F. 1903. Traité des Variations des Os du Crâne de l’Homme et leur Signification au Point de Vue de l’Anthropologie Zoologique. Paris: Vigot Frères. 400 p.
    20. Magherini, S., M. G. Fiore, B. Chiarelli et al. 2015. Metopic Suture and RUNX2, a Key Transcription Factor in Osseous Morphogenesis with Possible Important Implications for Human Brain Evolution. Italian Journal of Anatomy and Embryology 120(1): 5–20. https://doi.org/10.13128/IJAE-16469
    21. Marathe, R., A. Yogesh, S. Pandit, M. Joshi, and G. Trivedi. 2010. Inca — Interparietal Bones in Neurocranium of Human Skulls in Central India. Journal of Neurosciences in Rural Practice 1(1): 14–16. https://doi.org/10.4103/0976-3147.63094
    22. Martin, R., and K. Saller. 1959. Lehrbuch der Anthropologie, Band II. Stuttgart: Gustav Fischer. 123 p.
    23. Matsumura, G., M. A. England, T. Uchiumi, and G. Kodama. 1994. The Fusion of Ossification Centres in the Cartilaginous and Membranous Parts of the Occipital Squama in Human Fetuses. Journal of Anatomy 185(2): 295–300.
    24. Matsumura, G., T. Uchiumi, K. Kida et al. 1993. Developmental Studies on the Interparietal Part of the Human Occipital Squama. Journal of Anatomy 182(Pt. 2): 197–204.
    25. Mirsa, B. D., 1960. Interparietal Bone: A Case Report. Journal of the Anatomical Society of India 9: 39.
    26. Oetteking, B. 1930. The Jesup North Pacific Expedition XI, Craniology of the North Pacific Coast. New York: G.E. Stechert. 391 p.
    27. Ossenberg, N. S. 1969. Discontinuous Morphological Variation in the Human Cranium. Ph.D. diss, University of Toronto. 257 p.
    28. Ossenberg, N. S. 1970. The Influence of Artificial Cranial Deformation on Discontinuous Morphological Traits. American Journal of Physical Anthropology 33: 375–372. https://doi.org/10.1002/ajpa.1330330310
    29. Pal, G. P. 1987. Variations of the Interparietal Bone in Man. Journal of Anatomy 152: 205–208.
    30. Pietrusewsky, M. 1984. Metric and Nonmetric Cranial Variation in Australian Aboriginal Populations Compared with Populations from the Pacific and Asia. Occasional Papers in Human Biology 3: 1–113.
    31. Saunders, S. R. 1989. Nonmetric Skeletal Variation. In Reconstruction of Life from the Skeleton, ed. by M. Y. Iscan and K. A. R. Kennedy. New York: Alan R. Liss., 95–108.
    32. Saxena, S. K., D. S. Chowdhary, and S. P. Jain. 1986. Interparietal Bones in Nigerian Skulls. Journal of Anatomy 86, 144: 235–237.
    33. Shah, M. P., S. G. Desai, and S. Gupta. 2014. A Study of Interparietal Bone in 105 Human Skulls of Gujarat Population. GCSMC Journal of Medical Sciences 3(1): 28–30. https://doi.org/10.1016/J.JASI.2015.07.274
    34. Shapiro, R., and F. Robinson. 1976b. The Os Incae. American Journal of Roentgenology 127: 469–471.
    35. Shapiro, R., and F. Robinson. 1976a. Embryogenesis of the Human Occipital Bone. American Journal of Roentgenology 126: 1063–1068.
    36. Srivastava, H. C. 1992. Ossification of the Membranous Portion of the Squamous Part of the Occipital Bone in Man. Journal of Anatomy 180(2): 219–24.
    37. Tonkov, V. N. 1946. Anatomiia cheloveka [Human Anatomy]. Leningrad: Medgiz. 422 p.
    38. Torgersen, J. 1951. Hereditary Factors in the Sutural Pattern of the Skull. Acta Radiologica 36(5): 374–82. https://doi.org/10.1177/028418515103600504
    39. Torrey, T. W. 1978. Morfogénesis de los Vertebrados. Mexico: Limusa. 576 p.
    40. Tschudi, J. J. von. 1844. Über die Ureinwohner von Peru. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin: 98–109.
    41. Twigg, S. R. F., J. Forecki, J. A. Goos, I. C. A. Richardson et al. 2015. Gain-of-Function Mutations in ZIC1 are Associated with Coronal Craniosynostosis and Learning Disability. American Journal of Human Genetics 97(3): 378–388. https://doi.org/10.1016/j.ajhg.2015.07.007
    42. Virapongse, C., M. Sarwar, S. Bhimani, and E. S. Crelin. 1984. Skull Phylogeny: an Investigation Using Radiography and High-Resolution Computed Tomography. American Journal of Neuroradiology 5(2): 147–54.
    43. Wu, D. D., W. Jin, X. D. Hao, N. L. S. Tang, and Y. P. Zhang. 2010. Evidence for Positive Selection on the Osteogenin (BMP3) Gene in Human Populations. PLOS ONE 5(6): e10959. https://doi.org/10.1371/journal.pone.0010959

Published

22.12.2024

Issue

Section

Physical anthropology